
3D TRACKING
FOR
MICROBOONE
Ben Jones

Introduction
�  Been playing with reconstruction ideas on

and off at a low effort level for a while
�  This “semester” I am on LArSoft at approx 50%

effort level – time to make some of this stuff
genuinely useful

�  Start with trying to produce a robust, analysis-
independent 3D reconstruction algorithm

�  Progress being made but this is very
preliminary discussion, no results yet.

What a really good tracking
algorithm needs
�  1. Curved tracks. Hough lines are great, but only work with straight-

ish tracks (often good for short tracks for this reason)
�  2. Many tracks per event. Should provide the user with a list of track

objects for complicated events
�  3. Track object should contain (or be associated with) all the

information the user needs for subsequent PID. Whether this be at
the hit of 3D point level

�  4. Tracks which are joined together should be separable. This is why
we need to take a step beyond clusters.

�  5. Need to make a hypothesis about most likely shape, not just
know all possible shapes (see spacepoint degeneracy problem
from Erics studies)

�  6. Track should be able to report back its length, energy
measurement in 3 views, total curvature and possibly lots more.

The SpacePoint problem
�  I have been too harsh on spacepoints. Actually they are

incredibly useful, and my algorithm uses them. But it is
important to always remember, spacepoints tell you where
charge MIGHT BE, not where charge IS.

�  However, hits in the 2D view always tell you where charge IS.
�  I use spacepoints to seed the track, then fit a 3D object straight

onto the 2D hits.

Scope of this algorithm

2D

3D

Provide list of topological sections,
with total length, charge, shape
information, end points, and then
up to next module to event-build
from there.

The “StringFitter” Algorithm

Produce
track
seeds

Track

Walk from
seed

accumula
ting hits

Hits

Produce
space
points

SP’s Track
Seed

Throw away hits
collected and

make SPs again

(Reduced set)

By tracking in 2D, and by acknowledging when hits have already been
used, you aleviate spacepoint degeneracies

1. Produce space points

�  Uses Herbs SpacePointService, and code “borrowed”
from Eric to feed his kalman filter.

�  Space points are produced from combinations of
clusters.

�  Spacepoints from one combination of clusters may be
one or many tracks.

�  I require more than 5 spacepoints from a combination
before I bother tracking in it.

�  Of my 20 good single muon events, 18 have 1 cluster
and 2 have 2 clusters.

2. Produce Seeds

Take highest Z SP

Sort SP’s in Z

More than 5 others in 3cm?

Find their theta and phi from
the first point in bins. Is one
direction strongly favored?

yes

yes

no

no

Produce a seed at this point
using this direction

More than 5 SPs left in
collection?

Throw away 5 highest Z points
and try again

yes

Run out of points, no strong
seed found. Give up.

no

With these rules…

Stage 1
Cos(theta) vs
phi

Stage 2
Cos(theta) vs
phi

Status of Seeding
�  Seeding seems to work – I am basing this on text

output / handscanning.
�  Maybe someone can help me make seeds show up on

evd? That would be a great way to check if its actually
getting it right.

�  Also needs testing on some more complicated events
(so far just single track muons)

3. Stepping along 2D track

�  Steps are a finite length (I am working with 2cm).
�  One end is fixed at end of last step (or at seed). Angle

then free to rotate in 3D space.
�  At each step, maximize wrt theta, phi:

Theta constrained to within p/m 15 degrees. If track tries to bend
more than this in one step, stop tracing, store track and go again.

Event builder can stick these sections back together if it is useful for
a given analysis.

I just made up this function. There may be better ones.
Mine has :

2 parameters:
b : “resolution”
C : track stiffness

And depends on:
qi : charge of hit i
ri : projected distance of hit i
θ: angle from previous

 segment r

S(θ=0)

b=5

b=1

The projected distance, r
�  R is the distance of closest approach between the line

segment and the 2d hit
�  One hit defines a line in 3D space, segment does too, but

segment line has ends. Therefore, 2 regimes.

Also, we definitely don’t want to loop over every hit for every step.
So I first catalogue the hits into maps for easy access, and then for
each step use the geometry to preconstrain which wires are close
enough to care about before looping over hits.

segment

wire

segment

wire

r r

Parameters of the Algorithm:

Status:

Stepping is running and doing things that seem sensible. Needs
real testing and validation, which I haven’t got to yet.

Also need to produce real output objects to store in event –
recob::Track with necessary assns to 2d hits. At the moment I just
have a std::vector<TVector3>

Next stage is to accumulate all hits within some distance of track
(1cm?) and throw out, then repopulate spacepoints and seed
again. This part should be easy.

Nothing awesome to show today, sorry.

